Рейтинг 4.5 из 5 (13 Голосов)

PFC

Ни для кого не секрет, что одним из главных блоков компьютера является блок питания. При покупке мы обращаем свое внимание на различные характеристики: на максимальную мощность блока, характеристики системы охлаждения и на уровань шума. Но не все задаются вопросом что такое PFC?

Итак, давайте разберемся что дает PFC

Применительно к импульсным блокам питания (в системных блоках компьютеров в настоящее время используются БП только такого типа) этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов.

Power Factor Correction - переводится как «Коррекция фактора мощности», встречается также название «компенсация реактивной мощности».

Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.

PFC

PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.

Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.

Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри компьютерного блока питания. Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Как видно, форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого блока может достигать 0,95...0,98 при работе с полной нагрузкой.

Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7...0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания - он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110...230В, не требующие ручного переключения напряжения сети.

Такие БП имеют специфическую особенность – их эксплуатация совместно с дешёвыми ИБП, выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart, всегда подающие на выход синусоидальный сигнал.

Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т.е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

А теперь немного теории

Обычная, классическая, схема выпрямления переменного напряжения сети 220V состоит из диодного моста и сглаживающего конденсатора. Проблема в том, что ток заряда конденсатора носит импульсный характер (длительность порядка 3mS) и, как следствие этого, очень большим током.

Например, для БП с нагрузкой в 200W средний ток из сети 220V будет 1A, а импульсный - в 4 раза больше. Если таких БП много и (или) они мощнее? ... тогда токи будут просто сумасшедшими - не выдержит проводка, розетки, да и платить придется больше за электричество, ведь качество тока потребления весьма сильно учитывается.

Например, на больших заводах имеются специальные конденсаторные установки для компенсации "косинуса". В современной компьютерной технике столкнулись с теми же проблемами, но ставить многоэтажные конструкции никто не будет, и пошли другим путем - в блоках питания ставят специальный элемент по уменьшению "импульсности" потребляемого тока - PFC.

pfc1

Разные типы разделены цветами:

  • красный - обычный БП без PFC,
  • желтый - увы, "обычный БП с пассивным PFC",
  • зеленый - БП с пассивным PFC достаточной индуктивности.

На модели показаны процессы при включении БП и кратковременном провале через 250mS. Большой выброс напряжения при наличии пассивного PFC получается потому, что в дросселе накапливается слишком большая энергия при заряде сглаживающего конденсатора. Для борьбы с этим эффектом производят постепенное включение БП - вначале последовательно с дросселем подключается резистор для ограничения стартового тока, потом он закорачивается.

Для БП без PFC или с декоративным пассивным PFC эту роль выполняет специальный терморезистор с положительным сопротивлением, т.е. его сопротивление сильно возрастает при нагревании. При большом токе такой элемент очень быстро нагревается и величина тока уменьшается, в дальнейшем он охлаждается из-за уменьшения тока и никакого влияния на схему не оказывает. Т.о., терморезистор выполняет свои ограничивающие функции только при очень больших, стартовых токах.

Для пассивных PFC импульс тока при включении не так велик и терморезистор зачастую не выполняет свою ограничивающую функцию. В нормальных, больших пассивных PFC кроме терморезистора ставится еще специальная схема, а в "традиционных", декоративных этого нет.

И по самим графикам. Декоративный пассивный PFC дает всплеск напряжения, что может привести к пробою силовой схемы БП, усредненное напряжение несколько меньше случая без_PFC и при кратковременном пропадании питания напряжение падает на бОльшую величину, чем без_PFC. На лицо явное ухудшение динамических свойств. Нормальный пассивный PFC также имеет свои особенности. Если не учитывать начального всплеска, который в обязательном порядке должен быть компенсирован последовательностью включения, то можно сказать следующее:

- Выходное напряжение стало меньше. Это правильно, ведь оно равно не пиковому входному, как для первых двух типов БП, а "действующему". Отличие пикового от действующего равно корню из двух.
Пульсации выходного напряжения значительно меньше, ведь часть сглаживающих функций переходит на дроссель.
- Провал напряжения при кратковременном пропадании напряжения также меньше по той же причине.
- После провала следует всплеск. Это очень существенный недостаток и это основная причина, почему пассивные PFC не распространены. Этот всплеск происходит потому же, почему он происходит при включении, но для случая начального включения специальная схема может что-то откорректировать, то в работе это сделать много труднее.
- При кратковременном пропадании входного напряжения выходное меняется не так резко, как в других вариантах БП. Это очень ценно, т.к. медленное изменение напряжения схема управления БП отрабатывает весьма успешно и никаких помех на выходе БП не будет.

Для других вариантов БП при подобных провалах на выходах БП обязательно пойдет помеха, что может сказаться на надежности функционирования. Как часты кратковременные пропадания напряжения? По статистике, 90% всех нестандартных ситуаций с сетью 220V приходится как раз на такой случай. Основной источник возникновения, это переключения в энергосистеме и подключение мощных потребителей.

На рисунке показана эффективность PFC по уменьшению импульсов тока:

pfc2

Для БП без PFC сила тока достигает 7.5A, пассивный PFC уменьшает ее в 1.5 раза, а нормальный PFC уменьшает ток значительно больше.

Просмотров: 29919 Печать Назад
 

Комментарии 

#8 Дмитрий
25.01.2023 17:15
Цитирую Владимир:
Михаил, а вот теперь все это попытайтесь объяснить счетчикам электроэнергии. На подстанциях стоят счетчики активной и реактивной энергии. А у вас дома - нет. И чем больше ваши потребители берут энергию в форме прямоугольных импульсов, тем больше расхождение бытового счетчика и станционных ;)


Не очень понятно, как это противоречит тому, что написал Михаил. Если в какой-то момент энергии выделяется больше при высоком токе, то в следующий момент меньше. Это поддаётся описаниию с помощью среднего значения.

Для энергетиков это головная боль по другим причинам. В пределах квартиры никакой проблемы от этого не будет.
Цитировать
#7 Валерий
18.02.2021 05:02
В современных блоках питания PFC есть. Но Бесперебойники для таких систем ни все подойдут.

Если у Вас блок питания с Active PFC, то ищите ИБП с формой выходного напряжения в виде синусоиды.

Это не дешевые источники бесперебойного питания.
Искать желательно сразу среди интерактивных (среди них есть с нужной формой напряжения).

https://club.dns-shop.ru/blog/t-320-ibp/18778-kak-vyibrat-istochnik-bespereboinogo-pitaniya/
Цитировать
#6 Гость458
18.02.2021 03:38
Цитирую Гость458:
Добрый вечер. А что это за всплески (скачки) при пуске на втором с низу рисунке? Зачем они?

Извиняюсь, не увидел весь текст. Вопрос снят.
Интересует только одно, в БП с этой ситемой, что сейчас в продаже, эти всплески присутствуют или погашены? Имел дело с таки БП один раз, давно, и из-за них были проблемы у безперебойника(
Цитировать
#5 Гость458
18.02.2021 03:29
Добрый вечер. А чт это за всплески (скачки) при пуске на втором с низу рисунке? Зачем они?
Цитировать
#4 Владимир
03.12.2020 23:47
Цитирую Михаил:
Уважаемые товарищи, вообще-то любой переменный и импульсный ток характеризуется средним значением, оказывающим такое же действие, что и постоянный. И посему никаких горелых проводов и обугленных розеток от таких импульсов не будет наблюдаться. А вот чувствительные аппараты защиты могут сработать. Посему следует устанавливать автоматический выключатель с характеристикой C, а в обоснованных случаях, при наличии сети, способной выдержать токи КЗ 10-50 номинальных токов уставки ЭМ расцепителя и c характеристикой D, а также правильно выбирать УЗО, если оно требуется.

Михаил, а вот теперь все это попытайтесь объяснить счетчикам электроэнергии. На подстанциях стоят счетчики активной и реактивной энергии. А у вас дома - нет. И чем больше ваши потребители берут энергию в форме прямоугольных импульсов, тем больше расхождение бытового счетчика и станционных ;)
Цитировать
#3 сергей к.
02.08.2019 18:56
Цитирую Михаил:
Уважаемые товарищи, вообще-то любой переменный и импульсный ток характеризуется средним значением, оказывающим такое же действие, что и постоянный.

Михаил,будьте точнее-
Материал из Википедии — свободной энциклопедии
"Действующее (эффективное) значение переменного тока равно величине такого постоянного тока, который за время, равное одному периоду переменного тока, произведёт такую же работу (тепловой или электродинамиче ский эффект), что и рассматриваемый переменный ток."
Для действующего значения тока: I = 0,707 Im, а для среднего значения тока: Icp = 0,637 Im .
Цитировать
#2 Михаил
12.02.2019 06:20
Уважаемые товарищи, вообще-то любой переменный и импульсный ток характеризуется средним значением, оказывающим такое же действие, что и постоянный. И посему никаких горелых проводов и обугленных розеток от таких импульсов не будет наблюдаться. А вот чувствительные аппараты защиты могут сработать. Посему следует устанавливать автоматический выключатель с характеристикой C, а в обоснованных случаях, при наличии сети, способной выдержать токи КЗ 10-50 номинальных токов уставки ЭМ расцепителя и c характеристикой D, а также правильно выбирать УЗО, если оно требуется.
Цитировать
#1 Гость
03.04.2017 16:35
Компенсации "косинуса" и компьютерный блок питания имеют совершенно разную природу низкого PFC.
Цитировать